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Abstract

Small-molecule RNA binders have emerged as an important pharmacological modality. A profound understanding of the ligand selectivity, binding
mode, and influential factors governing ligand engagement with RNA targets is the foundation for rational ligand design. Here, we report a novel
class of coumarin derivatives exhibiting selective binding affinity towards single G RNA bulges. Harnessing the computational power of all-atom
Gaussian accelerated molecular dynamics simulations, we unveiled a rare minor groove binding mode of the ligand with a key interaction between
the coumarin moiety and the G bulge. This predicted binding mode is consistent with results obtained from structure-activity relationship studies
and transverse relaxation measurements by nuclear magnetic resonance spectroscopy. We further generated 444 molecular descriptors from 69
coumarin derivatives and identified key contributors to the binding events, such as charge state and planarity, by lasso (least absolute shrinkage
and selection operator) regression. Our work deepened the understanding of RNA-small molecule interactions and integrated a new framework
for the rational design of selective small-molecule RNA binders.
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Introduction tion, translation, splicing, and epigenetic modifications [1, 2].
RNA plays critical roles in gene regulation and various cel-  Selective targeting of RNA structures using small molecules
lular processes in almost all life forms, including transcrip-  is an important pharmacological modality that complements
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traditional protein targeting approaches [3-9]. For exam-
ple, bacteria ribosomal RNA (rRNA) is an important antibi-
otic target with numerous clinically validated drug classes,
such as aminoglycoside, tetracycline, macrolide, lincosamide,
and oxazolidinone [10]. Recently, two synthetic compounds,
risdiplam and branaplam, both targeting precursor messen-
ger RNA (pre-mRNA)-U1 small nuclear ribonucleoprotein
(snRNP) complex, attracted tremendous attention as RNA
splicing modulators to treat genetic diseases, including spinal
muscular atrophy [11-17] and Huntington’s disease [18-20].
We previously demonstrated that a class of coumarin ana-
logues of risdiplam can induce GA-rich sequences to form
loop-like structures using molecular dynamics (MD) simula-
tions and proposed that this interaction in cells provided ad-
ditional selectivity of the coumarin derivatives to the GA-rich
SMN2 gene [21].

In addition to rRNA in bacteria and pre-mRNA in hu-
mans, several other classes of RNA have been targeted by
chemical probes and drug candidates, including bacteria ri-
boswitches [22-24], yeast self-splicing introns [25], microR-
NAs [26-31], untranslated regions (UTR) of mRNAs [32-
34], and long non-coding RNAs [35-37]. In viruses, highly
structured RNA regions have also been explored as targets
for small molecules [38], such as an internal ribosome entry
site in the 5" UTR of the hepatitis C virus [39-42] and a trans-
activation response hairpin in human immunodeficiency virus
1 [43-45]. After the outbreak of SARS-CoV-2, we and oth-
ers illustrated that the structural elements in the SARS-CoV-2
genome can also be targeted to suppress virus replication [46—
51]. Specifically, we discovered that some coumarin deriva-
tives (Fig. 1) can be repurposed to selectively bind to a single
G bulge in 5" UTR of SARS-CoV-2 without retaining splic-
ing modulatory activities or binding to GA-rich loops [47].
We further demonstrated that covalently linking a ribonu-
clease (RNase) L recruiter and the coumarin-based G bulge
binder yielded an active ribonuclease targeting chimera, which
is effective in targeting SARS-CoV-2-infected epithelial cells
[47).

In general, attaining selective and effective targeting of
RNA using small molecules is a challenging endeavour due
to several factors, including its conformational flexibility and
heterogeneity and its polyanionic backbone, which all pre-
vents the formation of deep hydrophobic binding pockets for
small-molecule binding [8, 52]. Cheminformatics works have
uncovered key factors governing the activity and selectivity
of RNA binders [53-56] and have recently been further ad-
vanced by machine learning approaches [57]. However, the
lack of methods for mechanistic studies of flexible RNA-
small molecule ligand interactions critically limits further op-
timization of RNA ligands. A powerful approach to study-
ing RNA-small molecule interactions is to use molecular dy-
namics (MD) simulations [21, 58, 59], which are able to fully
account for the RNA flexibility on an atomistic level. Here,
we present an integrated framework that combines all-atom
Gaussian accelerated MD (GaMD) simulations, which can
rapidly predict ligand binding modes, with nuclear magnetic
resonance (NMR) transverse relaxation (R;) measurements
and structure-activity relationship (SAR) studies, which can
experimentally probe RNA-ligand interactions [21, 60]. We
envision that our mechanistic studies of RNA ligands could
serve as a model for understanding interactions between RNA
and small molecules and for enhancing binding affinity across
various RNA targets.

Materials and methods

Fluorescence polarization assay

Synthetic RNA oligonucleotides were procured from Gen-
Script (Piscataway, NJ, USA) and reconstituted in nuclease-
free water. Compounds were prepared at a concentration
of 50 uM in dimethyl sulfoxide (DMSO) and were diluted
in 2x assay buffer (50 mM 2-(N-morpholino)ethanesulfonic
acid [MES], 100 mM NacCl, 0.004% TritonX, pH 6.1) to a
concentration of 0.2 uM. A 1:3 dilution series of six points
was prepared for each RNA in 20 pl water, resulting in con-
centrations ranging from 0.1 to 20 uM. Subsequently, 20
ul of 2x working solution containing the assay buffer and
small-molecule ligand was added to each RNA sample in a
1:1 (v/v) ratio and mixed by pipetting. To measure fluores-
cence polarization (FP), 8 ul of the sample solution was trans-
ferred into a 384-well, black, flat-bottom microplate (Greiner,
#784076) in triplicate. The plate was equilibrated at room
temperature for 5 min prior to data acquisition using BioTek
Synergy H1 (Winooski, VT, USA) with a blue FP filter cube
(excitation/emission = 360/460 nm; BioTek, #8040563) at
25°C. Experimental data were analysed using the Prism 8.0
software package (GraphPad, San Diego, USA). A nonlinear
curve fitting was employed to calculate the dissociation con-
stant (Ky), reported with a 95% confidence interval.

Lasso regression

The structure of each of the 69 compounds was individu-
ally optimized using density-functional theory (DFT) calcu-
lation performed with Gaussian 09 software, employing the
B3LYP functional and 6-31G(d) basis set in the ground state
with default convergence criteria (see Supplementary data).
The protonation state was predicted by Molecular Operat-
ing Environment (MOE) 2022 software (Chemical Comput-
ing Group, Montreal, Canada) at pH 7.0. The structures of
all compounds were loaded on MOE 2022, and 443 molecu-
lar descriptors were generated using MOE 2022. Two molec-
ular descriptors, h_pKa and h_pKb, were excluded because
of the differential protonation states within the compound li-
brary. The dihedrals in degree units (°) between BC and DE
rings within the DFT-optimized 3-dimensional (3D) structures
were added as a new molecular descriptor. In the lasso regres-
sion analysis, the natural logarithm of the dissociation con-
stant [Ln(Ky), K4 in molar unit] was utilized as the dependent
variable (y-value) (for the molecular descriptor values used for
lasso regression, see MolecularDescriptors.csv). Lasso regres-
sion (L1 regularization) was performed in R (4.2.2) accord-
ing to the reported protocol [61] (see LassoRegression.rmd
for the R code). The non-zero coefficients were determined as
described in Supplementary Table S1.

GaMD simulations

GaMD is a computational enhanced sampling technique in
which a harmonic boost potential is added to smooth the
potential energy surface and reduce the system energy barri-
ers [60]. GaMD does not require predefined collective vari-
ables or reaction coordinates and is thus advantageous for
unconstrained enhanced sampling of complex biological sys-
tems such as ligand binding to highly flexible RNA. Since the
GaMD boost potential exhibits a Gaussian distribution, the
original biomolecular free energy profiles can be properly re-
covered through cumulant expansion to the second order [60].
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Figure 1. Molecular diversity of coumarin derivative analogues designed to bind bulged G RNA. The A, BC, and DE rings were replaced by the shaded
green, purple, and orange structures, respectively (wavy lines = connecting bonds).

GaMD has been successfully demonstrated on biomolecular
simulations and revealed physical pathways and mechanisms
of protein folding and ligand binding, which were consistent
with experiments and long-timescale conventional MD simu-
lations [62-66]. Recently, it was also applied to successfully
capture ligand binding to single-stranded RNA [21]. There-
fore, we adopt GaMD for RNA-ligand binding simulations in
this study.

The RNA composer (available at https://rnacomposer.cs.
put.poznan.pl) [67] was applied to build the simulation struc-
ture of target hairpin RNA with a G 1 x 0 bulge (RNAS:
5'-AAGAUGGAGAGCGAAACACACUCGUCUAUCUU). 3-
Dimensional (3D) structures of three coumarin derivatives
(C30, C30-Me, and SMSM64) were prepared using Chem-
Bio Tool. All small molecules were protonated with a + 1
charge at the nitrogen in the piperazine ring. Parameterization
of the small molecules was performed using antechamber with
atomic charges calculated using the AM1-BCC option [68].
Each small molecule was initially placed at a distance of >15
A away from the nucleic acid surface. Each simulation system
was then prepared using the tleap module in AMBER 22 [69].

The system charges were neutralized in 0.15 M NaCl [70] and
0.01 M MgCl, [71] solution. The AMBER OL3 force field
[72, 73] was employed for RNA, the latest GAFF2 [74] for
small molecules, and TIP3P [75] for water in the system. The
AMBER OLS3 force field was chosen for RNA because it has
been optimized with specific parameters to model the intrin-
sic structural features of RNA, such as base pairing, stacking
interactions, and high flexibility. These features are critical for
accurately predicting how small molecule ligands interact with
RNA. AMBER OLS3 excels in capturing the delicate balance of
interactions between RNA and ligands. The usage of AMBER
OL3 and GAFF2 force fields has already been demonstrated
to successfully capture ligand binding to single-stranded RNA
[21] and is thus adopted in this study.

GaMD simulations were conducted using the pmemd.cuda,
GPU-accelerating program in AMBER22 [69]. In all simula-
tions, the hydrogen-heavy atom bonds were constrained us-
ing the SHAKE [76] algorithm, and the simulation time step
was set to 2.0 fs. The particle mesh Ewald (PME) [77] method
was employed to compute the long-range electrostatic interac-
tions, and a cutoff value of 9.0 A was applied to treat the non-
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bonded atomic interactions. The temperature was controlled
using the Langevin thermostat with a collision frequency of
1.0 ps~'. Each simulation system was energy minimized using
the steepest descent algorithm. This was followed by subject-
ing the system to heating from 0 K to 300 K for 200 ps. The
system was further equilibrated using the constant number,
volume, and temperature run for 800 ps at 300 K and constant
number, pressure, and temperature ensemble at 300 K and
1 bar for 1 ns with 1 kcal/mol/A? constraints on the heavy
atoms of the RNA and ligand. A short conventional MD sim-
ulation for 10 ns without any constraint was performed to
collect initial potential statistics, including the maximum, min-
imum, average, and standard deviation (SD).

Dual-boost GaMD simulations were performed on binding
of the three coumarin derivatives to target RNA. One boost
potential was applied to the dihedral energetic term and the
other to the total potential energetic term. The reference en-
ergy E for applying the boost potentials was set to the lower
bound, i.e. E = Viax. The average and SD of the system poten-
tial energies were calculated every 300 000 simulation steps
(600 ps). The upper limit of the boost potential SD, 60, was set
to 6.0 kcal/mol for both the dihedral and the total potential
energetic terms. The GaMD equilibration was carried out for
63 ns after adding the boost potential. Finally, three indepen-
dent 1500 ns GaMD production simulations were conducted
for each system with randomized initial atomic velocities.

Simulation analysis

VMD [78] and CPPTRA]J [79] were used to perform trajectory
analysis. The hierarchical agglomerative clustering algorithm
[80] available in CPPTRA] was used to conduct clustering
of the ligand snapshots to identify low-energy conformations.
The frames were sieved at a stride of 500 for clustering. The
top 10 structural clusters were analysed to identify the rep-
resentative conformations of each system. The center-of-mass
distances were calculated between heavy atoms of the BC ring
of the ligand and the RNA nucleotide G24 and between heavy
atoms of the DE ring of the ligand and RNA nucleotide C12
using CPPTRA]J [79]. Furthermore, these distances were used
as reaction coordinates for calculating a 2D potential of mean
force free energy profile by reweighting all three GaMD sim-
ulations combined. The PyReweighting toolkit was used for
reweighting the GaMD simulations [81]. A bin size of 1 A
was used for the ligand distances and the cutoff was set to
500 frames in a bin or cluster for reweighting.

NMR experiments

An 84.1 nmol unlabelled RNAS sample (Sigma—Aldrich) was
dissolved in 135 pl of potassium buffer (25 mM potassium
phosphate buffer, 50 mM potassium chloride, pH 6.2, 10%
D, 0) to prepare an ~600 uM NMR sample. A similar sample
condition was used in a previous report [82], where NMR
assignment was determined for a > N-labeled RNA containing
the segment of RNAS.

All NMR spectra were acquired using a Bruker 800 MHz
Ascend spectrometer equipped with a TCI cryoprobe at 298
K (Supplementary Fig. S1). RNA proton peak assignment was
performed by comparing the measured 'H chemical shifts
with literature values (Supplementary Table S2) [82]. Pro-
ton peaks were assigned if the chemical shift difference was
<0.15 ppm. All NH protons of U and G residues that showed
peaks in the 10—14 ppm region were assigned accordingly,

except for the one from G24, where the literature assign-
ment was missing. Two proton peaks observed in this chemi-
cal shift region that were not previously assigned should cor-
respond to the NH of G24 as well as that of G13. G13 is a
part of the linker that differs from the RNA sequence used
in the literature. The proton peaks of G7-NH and U25-NH
did not appear until the addition of a 70 uM ligand. All
the unambiguously assigned resonances are summarized in
Supplementary Table S2.

The ligand stock solution prepared for the titration exper-
iment contained 10 mM C30 in DMSO-dé6. 0.47, 0.47, 0.94,
1.88,0.94,1.88,and 2.82 ul of the stock solution were titrated
into the RNA NMR sample to achieve final ligand concentra-
tions of 35, 70, 140, 280, 350, 490, and 700 uM, respectively.
Proton transverse relaxation rate R, was measured from SO-
FAIR (band-selective optimized flip-angle internally encoded
relaxation) (Supplementary Fig. S2) [83]. The band-selective
excitation pulse p39 was centred at 12.1 ppm with a band-
width of 5.2 ppm for NH region, and was centred at 7.6 ppm
with a bandwidth of 3 ppm for NH; /aromatic region. Trans-
verse relaxation was encoded through the incrementation of a
delay ¢ flanking the refocusing pulse p40. The delay time was
set to between 0 and 0.4 s with a total of 12 increments (0,
0.002, 0.005, 0.010, 0.015, 0.020, 0.025, 0.030, 0.050, 0.1,
0.2,and 0.4 s). The duration of each experiment is ~18.5 min.
Data were processed and analysed using MestReNova. R, of
each resonance was determined through area integration and
fitting the integrals to the following equation: I = Ipe *R2 4 B,
where # is the delay time, R; is the transverse relaxation rate,
and B is a constant to account for any baseline differences
between experiments.

Results

Coumarin derivatives selectively bind to RNA G

(1 x 0) bulge

The prototype coumarin derivative C2NH, which binds to
RNA single G bulges (denoted as G 1 x 0 bulge) at a mod-
erate binding affinity, contains five heterocyclic rings: piper-
azine (A), coumarin (BC), and a [5,6]-fused ring (DE) (Fig. 1).
We previously reported C2NH as an active splicing modula-
tor that can bind to a GA-rich loop within the SMN2 gene
[21]. We modified the E ring to remove the splicing modula-
tory activity and repurposed the scaffold to other RNA tar-
gets, resulting in a potent G 1 x 0 bulge binder that strongly
associates with a structural motif in the RNA genome of
SARS-CoV-2 21, 47]. To further probe the mechanism of the
coumarin derivative in RNA binding interaction, we synthe-
sized a collection of 69 analogues of C2NH (Fig. 1). Each
compound in this collection comprises at least one ring dis-
tinct from the parent compound. For instance, in Ring A, the
piperazine was replaced by cyclic amines of varying sizes. In
Ring BC, the coumarin was substituted by other heterocycles
with various substituents. Similarly, the [5,6]-fused Ring DE
was replaced by [6,5]- or [6,6]-fused rings (Fig. 1).

All compounds in this collection are fluorescent with an
excitation/emission wavelength at ~400/480 nm, which al-
lowed us to use FP assay to rapidly determine their bind-
ing affinity to the bulge G RNA. Using a bulged G RNA
segment from SARS-CoV-2 SL5S RNA as a model, we ex-
tensively profiled this 69-compound library against all four
1 x 0 RNA bulge variants (RNA1-4) for binding affinities
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Figure 2. Coumarin derivatives can selectively bind to RNA G 1 x 0 bulges: (A) RNA structures of the 1 x 0 RNA bulges used for in vitro binding profiling
using the FP assay. N= G, A, U, or C (RNA1-4). (B) Heatmap profile of the AmP = (FPRNAdigand _ ppligand) » 1000 for RNA binders in the presence of
[RNA] =5 or 1T uM (red = high polarization, blue = low polarization). (C) AmP of RNA-ligand complex for RNA ligands at 5 uM. Each data point
represents a measurement of a ligand in the 69-compound collection. **** indicates P < .0001. (D) Dose-response curves for compounds (SMSM6,
C30) selectively binding to the bulged G RNA (RNA1) compared to an 11-nucleotide GA-rich sequence that would form a double loop-like RNA structure

measured by the FP assay.

(Fig. 2A, Supplementary Figs S3 and S4, and Supplementary
Table S3). Almost all binding molecules showed superior se-
lectivity for the G bulge compared to other RNA bulges
(bulged A, U, and C), as judged by the polarization change
(AmP) at two concentrations (1 and 5 pM) (Fig. 2B).
Statistical analysis of all 69 compounds revealed that the
binding affinity for different RNA bulges followed the follow-
ing trend: G >> A ~ U > C (Fig. 2C). Since C2NH can also
bind to GA-rich RNA loops [21] via an induced-fit mecha-
nism, resulting in the formation of a double loop-like struc-
ture, we also tested the binding of coumarin derivatives to a
flexible GA-rich RNA (5'-U(GAAG),GU) (Supplementary Fig.
S5 and Supplementary Table S4). Interestingly, certain com-
pounds, such as C30 and SMSM6, demonstrated >35-fold
selectivity towards bulged G over GA-rich RNA (Fig. 2D),
while a few compounds bind to both RNAs with comparable
binding affinities (Supplementary Fig. S6). This suggests that

a portion of coumarin derivatives may employ a distinct bind-
ing mechanism to target the RNA 1 x 0 G bulge selectively.
The binding affinity of selected G bulge binders to RNA1 was
validated using the microscale thermophoresis assay, which
provided consistent results. (Supplementary Fig. S7).

GaMD simulations captured spontaneous binding
of coumarin derivatives to RNA G (1 x 0) bulges in
the minor groove

To explore the binding of specific RNA G bulge ligands, we
performed all-atom simulations using the GaMD method [60]
on binding of three coumarin derivatives to the model hairpin
RNAS with a G bulge (Supplementary Fig. S8A; see simula-
tion details in “Materials and methods” section).

We found that C30 bound spontaneously to the G bulge
and minor groove of RNAS during the GaMD equilibration
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Figure 3. GaMD simulations captured stable binding of coumarin derivative C30 to RNAS: (A) Time courses of the centerof-mass distance between
heavy atoms of the BC ring of ligand C30 and the RNA bulge G24 were calculated from three 1500 ns GaMD production simulations. (B) The
centerof-mass distance between heavy atoms of the DE ring of ligand C30 and RNA nucleotide C12 is plotted as a function of simulation time. (C) 2D
free energy profile calculated with all three GaMD simulations combined, showing two distinct low-energy states, namely the ‘Bound’ and
‘Intermediate’. (D) Representative conformation of RNA—C30 complex in the bound state (grey dash line = 77t stacking, yellow dash line = hydrogen
bonding, orange dash line = ionic interaction). The ‘Intermediate’ conformation is shown in Supplementary Fig. S9.

simulation (Supplementary Fig. S8B). It then maintained the
bound conformation in three independent 1500 ns GaMD
production simulations (Fig. 3). C30 remained bound to
the RNAS minor groove throughout nearly the entire three
1500 ns GaMD production simulations, despite small fluctu-
ations around ~800 ns in Sim3. Upon binding to the minor
groove of RNAS, a short distance was observed between the
coumarin core (BC ring) of the ligand and the bulged G24 at
3.5-5 A (Fig. 3A). Moreover, a 7—7 stacking interaction was
observed between C12 and the fused D/E ring of the C30 lig-
and in simulations (Fig. 3B). We used these distances as re-
action coordinates to further calculate a 2D free energy pro-
file of C30 binding to RNAS, which showed two low-energy
states, designated as ‘Bound’ (more stable) and ‘Intermediate’
states (Fig. 3C; bound state structure was deposited in Model
Archive Project ma-q6hl4). To experimentally probe the mi-
nor groove binding mechanism that we observed in the GaMD
simulations, we conducted additional FP binding assays us-
ing C30 and various DNA versions of the RNA G bulge se-
quences (same sequences as RNA1 and RNAS). Our results
show that the deoxyribose modification gives rise to a >13-
fold decrease in binding affinity (Supplementary Fig. S10).
This result differed from what we observed with GA-rich loop
binders, where the DNA aptamers bind to the ligands with a
higher binding affinity than the RNA aptamers with the same
sequences [21]. Given that double-stranded (ds) DNA typi-

cally adopts a different groove geometry than dsRNA [84], the
reduced binding of C30 to DNA supports a groove-binding
mechanism and highlights the RNA selectivity in C30 ligand
recognition.

In the ‘Bound’ state, C30 formed three primary interactions
within the minor groove of RNAS (Fig. 3D): (i) The bulged G
(G24) contributed to a hydrogen bond via its N1 position to
the coumarin lactone moiety in C30. (ii) A phosphate group in
the RNA backbone was involved in an ionic interaction with
the protonated NH,* group in the piperazine ring of C30. (iii)
Nucleotide C12 formed m—m stacking interactions with the lig-
and C30 in the RNA minor groove. In the transient ‘Interme-
diate’ state, C30 was located at a much larger distance from
the G24 nucleotide and did not insert into the RNA minor
groove (Supplementary Fig. S9).

We further performed GaMD simulations on two inactive
analogues of C30, namely C30-Me (Fig. 4A) and SMSM64
(Supplementary Fig. S11). C30-Me merely has an additional
methyl group on the C ring compared to C30, which would
break the planarity of Rings BC and DE within the compound
(see discussions below). On the other hand, SMSM64 has an
N-pyridinyl quinolone replacing the coumarin core, whose
bulkiness might block the polar interaction with the RNA G
bulge. In experiments, both compounds exhibited >100-fold
reduced binding affinities towards RNAS, with SMSM64 dis-
playing a dissociation constant (Ky) of >50 uM, in compar-
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ison to C30, which has a K4 of 0.27 4+ 0.01 uM to RNAS
(Supplementary Fig. S12). Similar binding affinities were ob-
served for these compounds when binding to RNA1 (see
Supplementary Table S3).

In all three 1500 ns GaMD simulations for C30-Me, the
ligand seldom reached the target site in the minor groove of
RNAS (Fig. 4). In the situation where C30-Me transiently
interacted with G24 nucleotide (‘Sim2’ in Fig. 4B), the lig-
and remained out of the RNA minor groove with a dis-
tance >10 A from nucleotide C12 (Fig. 4C). Altogether, four
transient binding states were identified from the free en-
ergy profile, designated as ‘Intermediate’ states 11-14, as well
as the ‘Unbound’ state, where the ligand dissociated from
the RNA (Fig. 4D and Supplementary Fig. S13). The pres-
ence of multiple intermediate states suggested that the lig-
and explored various binding positions but was unable to
achieve stable insertion into the minor groove. These inter-
mediate conformations all maintained ionic interactions be-
tween the positively charged piperazine ring on the ligand
and at least one phosphate group on the RNA backbone (Fig.
4E). For SMSM64, the ligand remained mostly >~15 A away
from key nucleotides G24 and C12 throughout the 1500 ns
GaMD simulations (Supplementary Fig. S11B and C). The re-
sulting free energy profile showed only an ‘Unbound’ state
(Supplementary Fig. S11D and E).

During the GaMD simulations, we observed high fluctua-
tions of G24 in RNAS in the absence of stable ligand bind-
ing as for the C30-Me and SMSM64 coumarin derivatives.
In comparison, stronger binding of C30 to RNAS led to sig-
nificantly reduced root-mean-square fluctuations of the RNA
nucleotides, especially G24 (Supplementary Fig. S14). Exper-
imentally, we screened ~20 crystal structures of RNA1 ob-
tained using fragment antigen-binding region (Fab) chaperon-
assisted crystallography (for a representative structure, see
Protein Data Bank with accession code 9DN4) and ob-
served dynamic conformations of the G bulge nucleotide
[85], whereas other nucleotides remained relatively static
(Supplementary Fig. S15 and Supplementary Table S5). This
result is also consistent with our chemical probing results
in SARS-CoV-2 RNA, where a high SHAPE (selective 2’ hy-
droxyl acylation analysed by primer extension) signal was ob-
served with high concentrations of acylation agents (e.g. 10
mM FAI-N3) [47].

NMR validation of the minor groove binding mode

Next, we used NMR experiments to validate the predicted
binding mode between coumarin analogues and the RNA with
a G 1 x 0 bulge. First, we assigned imino protons and some
other protons on the nucleobases in 'H NMR using a reported
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assignment that contains the segment of RNAS [82]. The as-
signed peaks were distinguishable ones within 0.15 ppm from
the reported "H NMR chemical shifts (Supplementary Table
S2). Next, we applied a recently published NMR method,
H SOFAIR (band-Selective Optimized Flip-Angle Internally-
encoded Relaxation) [86], to quantify R, relaxation rate of
the receptor signals in order to characterize RNA-ligand in-
teractions. R, relaxation reflects on dynamics and motion
changes of molecules, which is sensitive to weak binding (K4
~uM), and has been widely utilized as an NMR approach
for identifying the binding sites of biomolecules [87, 88].
Here, the SOFAIR pulse sequence [86] was utilized to facil-
itate signal acquisition with high sensitivity of an RNA sam-
ple at mM concentration. Notably, SOFAIR was specifically
designed to speed up data acquisition, and in this instance,
led to a reduction in acquisition time from several hours,
characteristic of conventional proton R, measurements us-
ing Carr-Purcell-Meiboom-Gill type of methods [89, 90] to
~20 min.

The R, relaxation rates were obtained from RNA nucle-
obases during the titration of the ligand C30 (Supplementary
Table S6). As shown in Fig. SA, the titration of C30 induced
an overall R, change, indicating binding between C30 and the
bulged G RNA. The most pronounced increase in R, was ob-
served in G9, A10,U22, C23, and G24, implying the direct in-
volvement of these nucleotides in binding. In contrast, the re-
laxation rates observed from G3 to G7 and C26 to C30 exhib-
ited much smaller increases or even negative changes upon lig-
and addition, suggesting that these regions of the RNA are not
directly involved in binding. These findings from NMR exper-
iments regarding the bound and unbound RNA nucleotides
are consistent with those obtained from the GaMD simula-
tions (Fig. 5B). Interestingly, the putative binding location is
selective to one side of the G bulge (U22-G24), implying se-
quence selectivity in the minor groove. It is worth noting that

only a few small molecular ligands have been reported as mi-
nor groove binders (e.g. PDB 1QD3) [91], likely because the
minor groove is wide and shallow in A-form dsRNAs. In sum-
mary, our NMR data strongly supported a minor groove bind-
ing mechanism for C30, as the ligand is unlikely to bind to
the major groove of the RNA given the observed R, relax-
ation changes. This finding further highlights the critical role
of the bulged G in ligand interactions within this unusual mi-
nor groove binding mechanism.

Molecular features on the ligands for RNA binding

We also determined how the molecular characteristics of these
ligands contribute to their efficacy in RNA G bulge binding.
Our approach involved an SAR analysis using regularized re-
gression based on in vitro binding affinity data. Given the
similarities in shape, size, and molecular scaffolds of our 69-
compound library, we expected the SAR analysis to offer de-
tailed molecular insight into the specific structural and elec-
tronic properties responsible for their potency.

We used MOE software to individually predict the most
likely protonation state based on the 2D structures of each
molecule. The majority of molecules were found to be mono-
protonated at the aliphatic cyclic amine (A ring), with a few
exceptions that carried two positive charges (Supplementary
data). We then optimized the 3D structure of each molecule
using ab initio DFT calculation with B3LYP 6-31G(d) ba-
sis set (Supplementary data). Using these 3D structures as in-
put, we generated 443 molecular descriptors using MOE soft-
ware (Supplementary data). To account for the planarity of
the coumarin derivatives, we introduced a new dihedral de-
scriptor between the aromatic rings BC and DE based on
the most stable conformer predicted by DFT calculations. We
then used the least absolute shrinkage and selection operator
(Lasso) regression technique to identify the important elec-
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Table 1. Molecular descriptors selected by lasso regression for RNA

binding®
Molecular descriptor Description® Class/impact®
FCharge Total formal charge of the Charge/+
molecule.
a_base Number of basic atoms. Charge/+
PEOE_VSA_FPOS Fractional positive VDWSA. Charge/+
PEOE_VSA_FNEG¢ Fractional negative VDWSA. Charge/—
PEOE_VSA_NEG Total negative VDWSA. Charge/—
NPR1 PMI ratio: PMI1/PMI3 Shape/—
std_dim1 The square root of the largest Shape/+
eigenvalue of the covariance
matrix of atomic coordinates.
o(BC-DE) Dihedral between BC and DE Shape/-

rings in the optimal structure.

AVDWSA = van der Waals surface area.
b4 and - signs indicate variables positively or negatively correlated to the
binding affinity. CPEOE_VSA_FNEG = -PEOE_VSA_FPOS. 4PMI = Nor-

malized principal moments of inertia.

tronic and structural features among these molecular descrip-
tors using a modified analytical pipeline [57, 61]. Lasso re-
gression is a linear regression approach used for feature selec-
tion, which effectively eliminates unimportant variables. This
process resulted in 16 molecular descriptors that significantly
contributed to the binding affinity (Supplementary Table S1),
of which eight molecular features are related to the charge and
shape of the RNA ligands (Table 1).

The five charge-related molecular descriptors were based on
the total formal charge of the molecule (FCharge), the number
of basic atoms that can be potentially protonated in physiolog-
ical pH (A_base), the fractional positive (PEOE_VSA_FPOS)
and negative (PEOE_VSA_FNEG) charges per unit area, and
the total negative charge per unit area (PEOE_VSA_NEG).
Since RNA is densely negatively charged, it is reasonable that
positive charges would significantly contribute to RNA bind-
ing due to charge attraction. In the GaMD simulations with
C30, intermolecular ionic interactions between the positive
charge on the piperazine ring of C30 and phosphate groups
on the RNA backbone were critical in maintaining the sta-
bility of the RNA-ligand complex. When we acetylated the
piperazine ring of C30 at the N4 position (C30-Ac) to pre-
vent protonation, the binding affinity decreased by a factor
of >3, highlighting the importance of electrostatic interaction
between the ligand and RNA (Supplementary Fig. S16). We
further hypothesized that the ligand used the positive charge
on Ring A to explore suitable binding pockets at the early
stage of the binding process. This hypothesis was supported
by GaMD simulations, in which we observed all identifiable
transient binding states (‘Intermediate’ states) of C30-RNAS
and C30-Me-RNAS5 complexes retained an ionic interaction
with RNA backbone phosphates (Supplementary Fig. S9 and
S$13; Supplementary Movie S1).

We also verified the impact of local positive charges on
coumarin derivatives on in vitro binding by selecting four
compounds, C29, C36, C34, and C34b, which only differ in
the structures of the E ring. These compounds have two po-
tential protonation sites: a piperazine A ring and an imidazole
D ring. The second protonation site on the D ring can be par-
tially stabilized by the coumarin moiety by forming an internal
hydrogen bond. We speculated that the propensity of imida-
zolium formation significantly depends on the substituents on
the E ring (Fig. 6A). For example, substituting the E ring with
a trifluoromethyl group makes the molecule less amenable to
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protonation due to the electron-withdrawing effects. In con-
trast, the presence of an electron-donating methoxy group in
compound C34b enhances the favourability of imidazolium
formation. When the methoxy group is positioned at the 4’
location (C34), the existence of a resonance structure further
contributes to stabilizing the positive charge (Fig. 6A). We ver-
ified the protonation energy of the four compounds relative to
C29 using DFT calculations and compared it with the in vitro
binding data (Fig. 6B and C). The dissociation constants for
these four compounds exhibit a consistent trend concerning
protonation energy, providing compelling evidence that local
positive charges on ligands significantly contribute to RNA
binding.

The 3D shape descriptors also strongly correlate with the
binding affinity (Table 1). For example, NPR1 and NPR2 are
numeric shape descriptors with values between 0 and 1 that
characterize the general 3D geometries of molecules [92]. All
compounds in our compound collection exhibit a small NPR1
value (<0.2) and a large NPR2 value (>0.85), indicating
rod-like molecular structures. This observation is consistent
with a prior cheminformatic analysis of diverse RNA-binding
molecules [54]. In addition, the positive contribution of the
shape descriptor std_dim1 indicates that a longer molecule
makes the ligand more favorable for binding, which is con-
sistent with our expectations for groove binders.

Finally, we observed a positive correlation between pla-
narity and binding affinity, as indicated by the inverse re-
lationship between the dihedral angle of Rings BC and DE
[o(BC-DE)] and the natural logarithm of the binding con-
stant (LnKy). In C30, the dihedral angle between the BC-DE
ring is ~0, making it a planar molecule (Supplementary Fig.
S$17), which facilitates groove binding. However, adding a
methyl group on ring C of C30 (C30-Me) causes steric hin-
drance between the methyl group and the lone pair elec-
tron of the imidazole nitrogen, disrupting the planarity of
the molecule, rending C30-Me a poor binder (Fig. 7A and
Supplementary Fig. $17). We also tested the role of this methyl
group on ring B (C30-MeRing®) | where the methyl group no
longer sterically clashes with the imidazole ring. As expected,
C30-MeRinsB js planar in its most favourable conformation
(Supplementary Fig. S17), and the binding affinity was com-
parable to that of C30 (Fig. 7A). Planarity might also con-
tribute to the high binding affinity of C34 (K4 = 0.10 £ 0.01
uM to RNAT1). In the second protonation site of C34, the im-
idazole ring can form an internal hydrogen bonding with the
coumarin lactone, further stabilizing the planar conformation
(Fig. 7B and Supplementary Fig. S17).

Discussion

In this study, we have reported a new group of coumarin
derivatives that exhibit selective binding to bulge G RNA.
Using all-atom GaMD simulations, NMR, and SAR stud-
ies, we have identified critical interactions that permit minor
groove binding as well as crucial molecular properties of the
ligands that significantly contribute to their binding affinity
to bulged G RNAs. The ligand-RNA minor groove binding
interface was validated by '"H SOFAIR NMR experiments
that can rapidly characterize the ligand binding behaviour on
RNAs. Our research establishes a new example for under-
standing RNA-small molecule interactions with nanomolar
binding affinity.
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